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  ABSTRACT  
 
Future NASA exploration missions will increasingly require sampling, in-situ analysis and possibly the return of 
material to Earth for further tests.  One of the challenges to addressing this need is the ability to drill using for low axial 
loading while operating from light weight platforms (e.g., lander, rover, etc.) as well as operate at planets with low 
gravity.  For this purpose, the authors developed the Ultrasonic/Sonic Driller/Corer (USDC) jointly with Cybersonics 
Inc.  Studies of the operation of the USDC at high power have shown there is a critical need to self-tune to maintain the 
operation of the piezoelectric actuator at resonance.  Performing such tuning is encountered with difficulties and to 
address them an extremum-seeking control algorithm is being investigated.  This algorithm is designed to tune the 
driving frequency of a time-varying resonating actuator subjected to both random and high-power impulsive noise 
disturbances. Using this algorithm the performance of the actuator is monitored on a time-scale that is compatible with 
its slowly time-varying physical characteristics.   The algorithm includes a parameter estimator, which estimates the 
coefficients of a function that characterizes the quality factor of the USDC.   Since the parameter estimator converges 
sufficiently faster than the time-varying drift of the USDC’s physical parameters, the proposed extremum-seeking 
estimation and control algorithm is potentially applicable for use as a closed-loop health monitoring system.   
Specifically, this system may be programmed to automatically adjust the duty-cycle of the sinusoidal driver signal to 
guarantee that the quality factor of the USDC does not fall below a user-defined set-point.    Such fault-tolerant 
functionality is especially important in automated drilling applications where it is essential not to inadvertently drive the 
piezoelectric ceramic crystals of the USDC beyond their capacities.   The details of the algorithm and experimental 
results will be described and discussed in this paper. 
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1. INTRODUCTION 
 
Future NASA exploration missions to Mars, Europa, Titan, comets and asteroids are seeking to perform sampling, in-situ 
analysis and possibly the return of material to Earth for further tests.  Existing drilling techniques are limited by the need 
for large axial forces and holding torques, high power consumption and an inability to efficiently duty cycle. Lightweight 
robots and rovers have difficulties accommodating these requirements. To address these key challenges to the NASA 
objective of planetary in-situ rock sampling and analysis, an ultrasonic/sonic driller/corer (USDC) was developed [Bar-
Cohen et al, 2001; Sherrit et al, 2000].   

 
Figure 1 - USDC drilling 



The actuator of the USDC is an ultrasonic horn transducer that is driven by a piezoelectric stack. Unlike the typical 
ultrasonic drill where the drill stem is acoustically coupled to the transducer, the horn transducer in the USDC drives a 
free flying mass (free-mass), which bounces between the horn tip and a drill stem at sonic frequencies. The impacts of 
the free-mass create stress pulses that propagate to the interface of the stem tip and the rock.  The rock fractures when its 
ultimate strain is exceeded at the rock/bit interface. This novel drilling mechanism has been shown to be more efficient 
and versatile than conventional ultrasonic drills under a variety of conditions.  The low mass of a USDC device and the 
ability to operate with minimum axial load with near zero holding torque (see Fig. 1) offers an important tool for sample 
acquisition and in-situ analysis.  Another important characteristic of the USDC is the capability to operate in the 
restrictive space environment. 
The functionality of the USDC was modeled to predict its performance. The developed model describes five elements 
involved in the drilling i.e. the electrical driver, ultrasonic transducer, free-mass, drill stem, and the rock. In a previous 
publication the main elements and the interaction between them were analyzed and modeled separately [Bao et.al. 2003]. 
A one-dimensional model was then developed for each interaction and an integrated software program was developed to 
simulate the operation of all parts of the USDC.  This paper presents the modeling and control design. 
 

2. MODELING 
 
The USDC device consists of three main parts: an ultrasonic transducer (piezoelectric stack, a backing element, and a 
horn), a free-mass, and a drill stem.  Fig. 2 shows a schematic of the USDC device.  The ultrasonic/sonic transducer can 
be designed to vibrate at a frequency from 5 to 25kHz depending on the application.  The vibrations of the horn tip excite 
the free-mass, causing it to bounce between the horn tip and the top of the drill stem with an average frequencies in the 
range of 100 to 1000 Hz.   The free-mass transfers energy from the ultrasonic transducer to the drill stem.  The shock 
waves caused by the impacts of the free-mass on the drill bit propagate to the bit/rock interface and wherever the rock is 
strained past its ultimate strain it fractures.  In order to determine the critical issues related to the control and 
optimization of the drill, models of the interaction at the various interfaces of the drill have been investigated.  The four 
interactions that were modeled include: 1) transducer with the driving circuit, 2) horn tip with the free-mass, 3) free-mass 
with the drill stem and 4) base of the drill stem (bit) with the rock.  Thus analysis has been presented in detail in a 
previous paper [Bao et al, 2003]. The following is a brief review of items 1 and 2.  From this analysis, a relevant control 
objective is defined.  Practical issues in achieving the control objective will be discussed in subsequent sections.  A 
software package was developed to analyze the closed-loop performance of various designs of a USDC device for ice 
coring, and these results are presented in the accompanying paper [Mircea’s paper]. 
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Figure 2 - USDC schematics 

2.1. Transducer/ ultrasonic actuator 



The transducer/ultrasonic actuator consists of a PZT-8 stack maintained in compression between a horn and a backing by 
a pre-stress bolt. The horn amplifies the vibration amplitude by varying the cross-sectional along its length. Various 
shapes of the horn were analyzed, including a dog-bone horn, a solid horn and a stepped horn. The transducer is a 
composite longitudinal vibrator with varying cross sections and can be modeled by the Mason equivalent circuit as 
presented in a previous paper [Sherrit et al, 1999].  In order to include engineering details in the final transducer design 
the finite element approach was used to determine the full frequency response of this piezoelectric device. An 
electromechanically coupled element [Allik and Hughes, 1970] was applied to model the piezoelectric material, which is 
available in commercial software ANSYSTM.  
In this high power ultrasonic application, the transducer is designed and fabricated to have high mechanical Q, and is 
operated at or near its first longitudinal resonance frequency. Using modal analysis allowed us to isolate and concentrate 
on this resonance mode and it simplifies the model and reduces the computing time. Solving the generalized eigenvalue 
problem of finite element equations, the resonance frequencies and corresponding mode shapes can be found. We obtain 
a set of resonance frequencies, nωωω ,,, 21 K  and normalized mode shapes (eigenvectors)  

       }{},...,{},{ 21 nξξξ .                                                               (1) 

 
Figure 3 - Mode shape  

Fig. 3 shows the modal shape of the first nonzero-frequency resonance of the transducer calculated by ANSYSTM.  The 
mode is basically a longitudinal vibration with larger displacement at the horn tip (right hand side in Fig. 3) than at the 
back.  The calculated resonance frequency was found to be 5.275 kHz using the material property data provided by the 
manufacturers, which was very close to the measured resonance frequency located between 5.2 to 5.3 kHz. 
By expressing the displacement as the summation of the modal shapes as: 
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The finite equations can be converted to modal equations and be simplified to an equivalent circuit for convenience in 
computation as was reported in a previous work [Bao et al, 2003], 
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where di is the amplitude of the mode i,  Q is the electric charge on the electrode, Ri, pi and Fmi are effective damping, 
electromechanical coupling and force for the modes respectively.  The Ri and pi can be calculated from the finite element 
matrixes, and Fmi is expressed as 
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where {F} is the vector of the force applied on the nodes. 
Only the first longitudinal mode is taken into account in the analysis.  With these substitutions (3) becomes: 
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where subscripts are omitted for simplification. 
A further simplification is shown for (5) by representing the response of the device by an equivalent circuit around 
resonance as is shown in Fig. 4, where subscripts m are added to denote that the symbols actually represent mechanical 
variables and parameters.  The element in the dashed square is the sketch of the electric driving circuit. 
Upon inspection we have Lm = 1, Cm = 1/ωi

2 and the mechanical "current" Im is the modal velocity 
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The mechanical resistance Rm is determined experimentally.  When the transducer is driven electrically and is 
mechanically unconstrained (no impacts with the free-mass), the modal velocity can be shown to be 
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Figure 4 - Schematic of the equivalent circuit of the transducer around resonance.  The generator source is also 

included in the dashed square. 

2.1.1. Reaction of free-mass impacts to the transducer 
In the operation of the USDC, a small preload force, either from gravity or from a spring is applied to the transducer to 
close the gap between the horn tip and the free mass. The force pushes the transducer down toward the free-mass and the 
bit. A harmonic voltage at a frequency around the resonance drives the transducer. The free-mass, energized by the 
impacts with the vibrating horn tip, then, bounces between the bit and horn tip and maintains a gap between them. The 
impacts of the free-mass to the horn tip affect both vibration and translation movements of the horn transducer. 
 
a) Translation movement of the horn transducer 
We assume the preload force is constant and produces an acceleration a of the transducer.  Suppose an impact happens at 
time It , and contact time is very short, the contact force can be expressed as 

)( IIc ttfF −= δ                                                                                        (8) 
where δ is the delta function.  Using momentum conservation in the impact, we have 

II vmf Δ−=                                                        (9) 
where m is the mass and ΔvI is the change in free-mass speed before and after impact. Each impact results in a change of 
the center of mass (COM) velocity of the horn by 
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where M is the total mass of the horn transducer, and H is the step function.  Therefore, the COM velocity of the 
transducer becomes 
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Due to the fact that the average velocity of the transducer is zero,  
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the average of IvΔ over all impacts in I , denoted avvΔ , can be computed from (10-12) as follows 
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where avT  denotes the average time elapsed between consecutive impacts between the horn and the free-mass.  



 
b) Vibration of the transducer with constant harmonic voltage driving 
When the source resistance dR , as shown in Fig. 3, is zero the transducer is driven by a constant voltage.  In this case, 
the vibration of the transducer can be solved explicitly.  From the equivalent circuit, we can write the corresponding 
differential equation as 

mmmm FpVdCdRdL +=++ &&&          (13) 
The solution of this equation is the summation of the vibration induced by the electric voltage V and the vibration caused 
by the mechanical force mF .  The steady solution for a harmonic voltage )exp(0 tjVV ω=  is 
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A mechanical force is caused by the impacts of the free-mass on the horn tip and can be determined from  (4),  (8) and 
(9), to be 
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where tξ  is the tip displacement of the mode shape.  The time-averaged mechanical force caused by the impacts is 
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The solution of (12) for the impact force Fm is a free ring-down vibration after the impact time It  and is expressed as 
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where α  is the damping coefficient and ωf is the free vibration frequency, and 
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The final solution of the modal velocity is 
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Assumption. For modeling purposes, we assume that the affect of the impact forces mF  can be accounted for by 
adjusting the circuit’s average impedance. 
 
c) Transducer driven by a driver with output resistance 
In general, the output resistance of electronic drivers is not zero.  The resistance will reduce the output voltage, increase 
energy loss and change the characteristics of the vibrations induced by the impacts.   
The same approach utilized in the previous section can be applied to the case of non-zero output impedances of the drive 
circuit except resulting more complicated solution.  The steady solution of the electric driving voltage in this case is then 
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where the impedance of the transducer xZ  is 
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The solution for the impact is 
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where S  is the solution of 
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This cubic equation has one real root and a pair of conjugate complex roots.  For the free attenuating vibration, the 
solution S is in the form as 

fjS ωα +−= .                (23) 
Although it is possible to obtain explicit expression of the solution, the expression is cumbersome and not accurate in 
practical numerical calculations.   
 
d) Interaction between the transducer and the electric driver 
Power output from the voltage source PE  is the time averaged integral of product of multiplication of the source voltage 
by the current and is expressed as 

∫ ∫ ∑

∫

+=

=

T T I
Ie

T
E

dttItE
T

dttItE
T

dttItE
T

P

)()(1)()(1

)()(1

           (24) 

or  
            EIEeE PPP += ,           (25) 

where the first item in (24), EeP , is the power with no free-mass loading and   is the power change introduced by the 

free-mass loading.  )(tI e  is the current though the source due to the electric drive voltage, and )(tI I  is the current due 
to the free-mass impacts, 
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The power lost on the resistor Pd is calculated using the time-averaged power 
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It should be noted that, in these power calculations, all voltages and currents are expressed as real functions of time 
rather than their complex expression. Beside, the currents introduced by the impacts )(tI I  attenuate with time and 

oscillate at the frequency fω , which may be different from the driving frequency ω .  Therefore, the integrals in (24) 
and (28) are in a general form of 
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e) Time-averaged vibration of the transducer under constant harmonic voltage and time-averaged impacts 
A mechanical force is caused by the impacts of the free-mass on the horn tip and can be determined from (15), to be 
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2.2. Model-based control objective 

From figure 4, the complex electrical admittance of the transducer/ultrasonic actuator, denoted xY , is governed by 
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where mY is the voltage-to-velocity transfer function of the mechanical resonator given by 

mmm
m RCLj

pY
+−

=
)/1( ωω

                (36) 

In order to maximize drilling rates, the control objective is to determine the sinusoidal drive frequency ω  that 
maximizes )(ωmY .  If mL and mC are known, then the optimal control law ∗ω becomes 
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However, mL and mC are temperature-dependent parameters that are not known precisely.  Viewing these parameters as 

unknown time-varying quantities motivates the following tracking control problem.  
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If the drive voltage amplitude V  and the horn tip’s modal velocity amplitude mI  are measurements available in real-
time, then resonance tracking amounts to continuously updating the drive frequencyω  to take steps in the direction of 
steepest ascent of )(ωmY .  This algorithm is straightforward and will be addressed in the next section.  Unfortunately, 

the horn tip’s modal velocity amplitude mI  is not an available measurement.  However, the electrical current going into 
the transducer is measurable using a low-resistance resistor.   Hence, the following sub-optimal, yet practical, control 
problem is implementable 
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It is natural to ask if the suboptimal control (39) is effective at approximating our true objective (38).  Substituting the 
mechanical resonant frequency (37) into the gradient of (40) w.r.t. ω yields the optimal slope to track.  That is, 
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Since 0C is very small, opty′ is a small negative number that in most applications that can be approximated as zero.  

Solving (39), is equivalent to enforcing the heuristic, 0=′opty .  In short, control problems (38) and (40) are related by  
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where the optimal drive frequency ∗ω is just slightly higher than that obtained from (39). 
 

 
 



3. EXTREMUM SEEKING CONTROL 
Tracking the appropriate resonant frequency is important because the natural frequency of the device drifts over time as 
the USDC heats up during high power drilling.  In the previous section the control objective was introduced.  In the 
following, the details of the control algorithm are introduced.  The algorithm is a real-time optimization algorithm that 
tracks the time-varying drift of the device.  The algorithm can be broken down into two different modes—hillclimbing, 
estimation-based extremum-seeking control.  These modes are introduced below. 

3.1. Hill-climbing  
The most straightforward frequency control approach is to employ hill-climbing techniques [7].  This approach drives 
the ultrasonic actuator at some arbitrary initial frequency 1ω . Once the USDC reaches steady-state at this frequency, the 

current and voltage amplitudes are time-averaged and sampled to yield a performance function estimate 111 VIy = . 
Increasing the number of waveforms averaged, increases the signal-to-noise ratio of this estimate while prolonging its 
latency.   The drive frequency is then adjusted h+= 12 ωω where h is a relatively small step-size, and the current and 

voltage amplitudes are sampled again to yield 222 VIy = .  If 12 yy > , the search direction was favorable and is 

used in the next iteration, i.e. h+= 23 ωω .  Otherwise, the search direction is ill-advised, and we choose 

h−= 13 ωω .  The control algorithm continues until it begins “climbing” up a resonant peak of the device.  Since there 

are several resonant peaks to the device, it is important that 1ω is near the desired peak to climb.   Increasing the step-
size increases the convergence rate to the peak.  Once the peak is reached, the algorithm switches back and forth about 
the optimum drive frequency.   Decreasing the step-size, decreases oscillations about the peak. Specifically, the fixed-
step hill-climbing algorithm is implemented with the following recursive formulas  
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where 0>fh and 0>revh are user-defined fixed step sizes for the forward and reverse step directions.  The fixed-step 
hill-climbing algorithm is generally reliable in finding the resonant peak.  This is due in part because it assumes nothing 
about the modeling parameters that describe the shape, location and drift rate of the resonant peak as the device is 
drilling.  However, due to the fixed-step size, the commanded input frequency of the drive sinusoid tends to “jump” back 
and forth such that the output jumps back and forth on both sides of  the resonant peak.   To circumvent this problem, the 
fixed-step in (43) can be replaced with the following variable-step update    
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where κ  is a user-defined gain and the sat(.) function clips the derivative approximation in order to keep the step-size 
within user-defined bounds.  As the drive frequency approaches resonance, the slope of the admittance versus frequency 
map begins to flatten out which implies that 1−< kk dxdx  by virtue of (44).  This approach is generally effective in 
eliminating excessive dithering of the input frequency near resonance.  A drawback of this approach is that the 
admittance slope is approximated using only a single point measurement which can be sensitive to noise disturbances.   
In order to avoid excessive switching of the sinusoidal input frequency, it is desirable to obtain a continuous estimate of 
the drive frequency once a sufficiently small neighborhood of the resonant peak has been identified.  Towards this end, a 
least squares estimator is developed next. 
 



3.2. Estimation-based extremum-seeking control  
 
In this section, we assume that the admittance function can be approximated by a quadratic function whose parameters 
are identified in real-time using an online estimator.  The assumed quadratic model is 

2
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where )(tω  is the commanded (known) sinusoidal drive frequency at time t, and )(ty is the measured electrical 
admittance (performance metric) of the ultrasonic transducer.  The unknown, and generally time-varying parameters of 
this model include parameters 0ω , 0y  and a .   Clearly, if these parameters are estimated correctly in real-time (model 

fits the input/output data with least-squares error), then 0ω  corresponds to the resonant frequency, 0y corresponds to the 

admittance at resonance and a corresponds to the curvature of the resonant peak near resonance  (provided )(tω is 
within a sufficiently small neighborhood of resonance).   In order to avoid numerical conditioning problems in estimating 

0y , model (45) is rewritten in increment form [7]: 
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Equation (46) is linear in its unknown parameters, and therefore can be rewritten as 
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where 
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Standard least-squares algorithms can be used to minimize the following estimation error. 
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where f is some positive definite function [8].  In particular, the recursive least-squares estimator is given by 
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with )0(θ̂ given and )0(P is any positive definite matrix.  In [8], variations of this algorithm are given to incorporate 
forgetting factors in order to place more weight on new measurements over older ones, which is important in tracking 
time-varying parameters.  Once the parameter estimates have converged the recursive algorithm above will continue to 
update the parameters so that they track their true time-varying values.  Conditions for this to occur are outlined in [7,8]. 
In particular, the resonant frequency and resonant peak curvature of the device can be monitored in real-time by the 
following estimates 
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Hence, the estimation-based extremum-seeking controller becomes 
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where pertω is a small perturbation, such as a low amplitude sinusoid, that is designed to satisfy the persistency of 
excitation condition as in [7]. In order for resonance tracking to remain stable, it is important to recognize that (52) is 
only used while the parameter estimates have converged, and the the drive frequency inputs kω  have remained within a 
sufficiently small neighborhood of resonance for a sufficient amount of time.  This is essential because we are fitting a 
quadratic function to a unimodal output map.  Since unimodal functions are only locally quadratic near the optimal 
resonant frequency, our parameter estimator in equation (50) must only be incremented when the input frequencies are 
within the vicinity of resonance.  When this is not the case, for instance, when the last three inputs create positive, not 
negative curvature, then these inputs are expunged from the algorithm since it is designed to detect when this occurs (Fix 
this paragraph.)  The performance of this control approach in resonance tracking is experimentally demonstrated in the 
next section of the paper.    

4. EXPERIMENTAL DEMONSTRATION 
A LabVIEW software package was developed at JPL to implement the hill-climbing and estimation-based extremum-
seeking control approaches for the USDC.  LabVIEW operates on a personal computer and interfaces to a Tektronix 
function generator and oscilloscope via GPIP cables and commands.  The function generator output is the frequency-
controlled sinusoid that drives the USDC.  The oscilloscope is responsible for measuring the voltage and current 
waveforms that drive the USDC.  In order to increase the signal-to-noise ratio of the output signal, a moving average 
filter is implemented directly in the oscilloscope, and can be adjusted on-line in LabVIEW.   LabVIEW generated data, 
imported to matlab yields the the closed-loop control plots described in figure (5) and (6) below. 

4.1.1. Timing issues for controller implementation:  3 time-scale approach 
The fastest time-scale is the ultrasonic oscillation time-scale.  On a much slower time scale is the time-constant (or 
latency) of the moving time-average responsible for filtering out noisy output data from the fast time-scale.      The 
slowest time-scale is the time-varying plant parameters.  Moving average and RMS filters such as 
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−

= )(1)( 2       (53) 

improve signal-to-noise, at the expense of increased latency, as T is increased.  The filter time-constant has to be small 
enough to track shifts in the resonant frequency, but large enough to filter out noise from the drill impacts.  Typically, 
this involves an update latency of 100ms to 3000ms for high-power drilling. 
    
 

 



Figure 5 – Performance (admittance) v.s. input (frequency).  Hill-climbing algorithm initialized at 22.4kHz. (a) 
Low input power increases input to 22.54kHz.  (b) High input power increases input to 22.45kHz and then tracks 

resonance as it drops to 22.42kHz. 

 
Figure 6 – Solid line represents least-squares estimate of frequency.  Discrete data points are the drive frequency 
inputs.   At the controller switch point the hill-climbing algorithm is replaced by the estimation-based extremum-

seeking controller for smoother control. 

 

5. CONCLUSIONS 
Extremum-seeking control is an effective means for tracking the resonant frequency of high-power drills.  The merit of 
this approach lies in its ability to track the resonant frequency on a time-scale that is appropriate for the drift rates of the 
unknown time-varying parameters.   Future work will include varying the duty-cycle so that the performace can be 
tracked.  More specifically, a variable duty-cycle can be used to ensure that the quality factor stays close to a desired 
level.  As the USDC drills at high power, the device heats up.  As the temperature in the piezoelectric elements begins to 
rise, the quality factor of the device decreases.  Reducing the duty-cycle keeps the USDC from overheating and 
damaging crystals.  Increasing the duty cycle reduces the time-to-drill.   Typically, its both safe and efficient to run the 
USDC at a duty-cycle that keeps the quality factor of the device from decreasing no more than 30% of its maximal value 
at room-temperature.  The control approach discussed next works very similar to a thermostat feedback temperature 
control system, with the added bonus that no temperature sensors are required, just the electrical current and voltage 
measurements.  In particular, most thermal systems are typically governed by the following dynamical model 

RuT
dt
dTRC =+       (53) 

where R is the thermal resistance (Celcius*sec/kcal), and C is the thermal capacitance (kcal/Celcius), T is the current 
temperature (Celcius) at time t, and u is the duty cycle.  
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